Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2009 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Phosphorylation of Nephrin Triggers Ca2+ Signaling by Recruitment and Activation of Phospholipase C-γ1

Authors: Yutaka, Harita; Hidetake, Kurihara; Hidetaka, Kosako; Tohru, Tezuka; Takashi, Sekine; Takashi, Igarashi; Ikuroh, Ohsawa; +2 Authors

Phosphorylation of Nephrin Triggers Ca2+ Signaling by Recruitment and Activation of Phospholipase C-γ1

Abstract

A specialized intercellular junction between podocytes, known as the slit diaphragm (SD), forms the essential structural frame-work for glomerular filtration in the kidney. In addition, mounting evidence demonstrates that the SD also plays a crucial role as a signaling platform in physiological and pathological states. Nephrin, the major component of the SD, is tyrosine-phosphorylated by a Src family tyrosine kinase, Fyn, in developing or injured podocytes, recruiting Nck to Nephrin via its Src homology 2 domain to regulate dynamic actin remodeling. Dysregulated Ca(2+) homeostasis has also been implicated in podocyte damage, but the mechanism of how podocytes respond to injury is largely unknown. Here we have identified phospholipase C-gamma1 (PLC-gamma1) as a novel phospho-Nephrin-binding protein. When HEK293T cells expressing a chimeric protein consisting of CD8 and Nephrin cytoplasmic domain (CD) were treated with anti-CD8 and anti-mouse antibodies, clustering of Nephrin and phosphorylation of Nephrin-CD were induced. Upon this clustering, PLC-gamma1 was bound to phosphorylated Nephrin Tyr-1204, which induced translocation of PLC-gamma1 from cytoplasm to the CD8/Nephrin cluster on the plasma membrane. The recruitment of PLC-gamma1 to Nephrin activated PLC-gamma1, as detected by phosphorylation of PLC-gamma1 Tyr-783 and increase in inositol 1,4,5-trisphosphate level. We also found that Nephrin Tyr-1204 phosphorylation triggers the Ca(2+) response in a PLC-gamma1-dependent fashion. Furthermore, PLC-gamma1 is significantly phosphorylated in injured podocytes in vivo. Given the profound effect of PLC-gamma in diverse cellular functions, regulation of the Ca(2+) signaling by Nephrin may be important in modulating the glomerular filtration barrier function.

Keywords

Oncogene Proteins, Phospholipase C gamma, Podocytes, CD8 Antigens, Membrane Proteins, Inositol 1,4,5-Trisphosphate, Proto-Oncogene Proteins c-fyn, Antibodies, Rats, Enzyme Activation, Mice, Protein Transport, Intercellular Junctions, NIH 3T3 Cells, Animals, Humans, Calcium Signaling, Immunologic Capping, Phosphorylation, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    62
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
62
Top 10%
Top 10%
Top 10%
gold