Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bulletin of Environm...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bulletin of Environmental Contamination and Toxicology
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Total and Methylmercury of Suaeda heteroptera Wetland Soil Response to a Salinity Gradient Under Wetting and Drying Conditions

Authors: Hang, Li; Dongmei, Zheng; Xun, Zhang; Zhixin, Niu; Huanchi, Ma; Shiwei, Zhang; Chenghao, Wu;

Total and Methylmercury of Suaeda heteroptera Wetland Soil Response to a Salinity Gradient Under Wetting and Drying Conditions

Abstract

Mercury (Hg) methylation could occur in freshwater ecosystems with low or high salinity. However, few studies are available about the effects of salinity change on mercury(Hg) release and methylation. In-situ experiments using Suaeda heteroptera wetland soil column from the Liaohe estuary were performed to decipher how total mercury (THg) and methylmercury (MeHg) contents change under fluctuant salinity and wet and dry soil conditions. Salinity gradients were set to 0.50% (S1), 1.00% (S2), 1.50% (S3) and 1.80% (S4), and pure deionized water was used as a blank control (CK). Wet and dry soil conditions were set to full inundation condition (WD1) and naturally dried treatment (WD2). Results indicated that the highest THg and MeHg contents were found in surface and bottom soil when water salinity treatment was CK under WD1. THg and MeHg decreased with salinity under WD1. THg contents in overlying water varied from 0.854 to 1.243 µg L-1 under WD1 treatments and increased with salinity change. When under WD2 treatment, THg contents in both soil layers gradually decreased with rising salinity. Meanwhile, MeHg contents in both soil layers reached the lowest level at CK (1.666 μg kg-1and 2.520 μg kg-1) and increased gradually with the rising salinity. By comparison, THg content of the soil was much lower in WD1 than that in WD2. Under the WD1 condition, the MeHg contents and %MeHg decreased with rising salinity and showed significantly different in different salinity treatment, however, its showed an opposite trend with rising salinity under the WD2 condition.

Related Organizations
Keywords

China, Salinity, Fresh Water, Mercury, Chenopodiaceae, Methylmercury Compounds, Models, Theoretical, Methylation, Soil, Wetlands, Animals, Soil Pollutants, Estuaries, Ecosystem, Water Pollutants, Chemical, Environmental Monitoring

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average