Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1993 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell
Article . 1993
versions View all 2 versions

Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation

Authors: C M, Smas; H S, Sul;

Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation

Abstract

With the aim of identifying novel regulators of adipocyte differentiation, we have cloned and characterized preadipocyte factor 1 (pref-1), a novel member of the epidermal growth factor (EGF)-like family of proteins. Pref-1 is synthesized as a transmembrane protein with six tandem EGF-like repeats. In preadipocytes, multiple discrete forms of pref-1 protein of 45-60 kd are present, owing in part to N-linked glycosylation. While pref-1 mRNA is abundant in preadipocytes, its expression is completely abolished during differentiation of 3T3-L1 preadipocytes to adipocytes. Moreover, constitutive expression of pref-1 in preadipocytes, which in effect blocks its down-regulation, drastically inhibits adipose differentiation. This indicates that pref-1 functions as a negative regulator of adipocyte differentiation, possibly in a manner analogous to EGF-like proteins that govern cell fate decisions in invertebrates.

Related Organizations
Keywords

Base Sequence, Epidermal Growth Factor, Calcium-Binding Proteins, Molecular Sequence Data, Membrane Proteins, Sequence Homology, Cell Differentiation, Cell Line, Repressor Proteins, Mice, Plasma, Adipose Tissue, Animals, Intercellular Signaling Peptides and Proteins, Amino Acid Sequence, RNA, Messenger, Cloning, Molecular

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    599
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
599
Top 1%
Top 1%
Top 10%