Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arteriosclerosis Thr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Atherosclerosis
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Arteriosclerosis Thrombosis and Vascular Biology
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

ATG16L1 expression in carotid atherosclerotic plaques is associated with plaque vulnerability

Authors: Joëlle, Magné; Peter, Gustafsson; Hong, Jin; Lars, Maegdefessel; Kjell, Hultenby; Annika, Wernerson; Per, Eriksson; +4 Authors

ATG16L1 expression in carotid atherosclerotic plaques is associated with plaque vulnerability

Abstract

Objective— Autophagy has emerged as a cell survival mechanism critical for cellular homeostasis, which may play a protective role in atherosclerosis. ATG16L1, a protein essential for early stages of autophagy, has been implicated in the pathogenesis of Crohn’s disease. However, it is unknown whether ATG16L1 is involved in atherosclerosis. Our aim was to analyze ATG16L1 expression in carotid atherosclerotic plaques in relation to markers of plaque vulnerability. Approach and Results— Histological analysis of 143 endarterectomized human carotid atherosclerotic plaques revealed that ATG16L1 was expressed in areas surrounding the necrotic core and the shoulder regions. Double immunofluorescence labeling revealed that ATG16L1 was abundantly expressed in phagocytic cells (CD68), endothelial cells (CD31), and mast cells (tryptase) in human advanced plaques. ATG16L1 immunogold labeling was predominantly observed in endothelial cells and foamy smooth muscle cells of the plaques. ATG16L1 protein expression correlated with plaque content of proinflammatory cytokines and matrix metalloproteinases. Analysis of Atg16L1 at 2 distinct stages of the atherothrombotic process in a murine model of plaque vulnerability by incomplete ligation and cuff placement in carotid arteries of apolipoprotein-E-deficient mice revealed a strong colocalization of Atg16L1 and smooth muscle cells only in early atherosclerotic lesions. An increase in ATG16L1 expression and autophagy flux was observed during foam cell formation in human macrophages using oxidized-LDL. Conclusions— Taken together, this study shows that ATG16L1 protein expression is associated with foam cell formation and inflamed plaque phenotype and could contribute to the development of plaque vulnerability at earlier stages of the atherogenic process.

Keywords

Aged, 80 and over, Male, Endarterectomy, Carotid, Autophagy-Related Proteins, Endothelial Cells, Apoptosis, Risk Assessment, Sensitivity and Specificity, Sampling Studies, Gene Expression Regulation, Autophagy, Disease Progression, Humans, Carotid Stenosis, Female, Mast Cells, Carrier Proteins, Cells, Cultured, Aged, Foam Cells

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Top 10%
Top 10%
Top 10%
bronze