Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PLoS ONEarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PLoS ONE
Article . 2012
Data sources: DOAJ
versions View all 4 versions

Anthrax Toxin Receptor 2 Functions in ECM Homeostasis of the Murine Reproductive Tract and Promotes MMP Activity

Authors: Claire V Reeves; Xing Wang; Pelisa C Charles-Horvath; Joy Y Vink; Valeriya Y Borisenko; John A T Young; Jan K Kitajewski;

Anthrax Toxin Receptor 2 Functions in ECM Homeostasis of the Murine Reproductive Tract and Promotes MMP Activity

Abstract

Anthrax Toxin Receptor proteins function as receptors for anthrax toxin, however physiological activity remains unclear. To evaluate the biological role of Antxr2, we generated Antxr2-/- mice. Antxr2-/- mice were viable, however Antxr2 is required for parturition in young females and for preserving fertility in older female mice. Histological analysis of the uterus and cervix revealed aberrant deposition of extracellular matrix proteins such as type I collagen, type VI collagen and fibronectin. A marked disruption of both the circular and longitudinal myometrial cell layers was evident in Antxr2-/- mice. These changes progressed as the mice aged, resulting in a thickened, collagen dense, acellular stroma and the disappearance of normal uterine architecture. To investigate the molecular mechanism underlying the uterine fibrosis we performed immunoblotting for MMP2 using uterine lysates and zymography using conditioned medium from Antxr2-/- mouse embryonic fibroblasts and found reduced levels of activated MMP2 in both. This prompted us to investigate MT1-MMP status, as MMP2 processing is regulated by MT1-MMP. We found MT1-MMP activity, as measured by MMP2 processing and activation, was enhanced by expression of either ANTXR1 or ANTXR2. We identified an ANTXR2/MT1-MMP complex and demonstrated that MT1-MMP activity is dependent on ANTXR2 expression levels in cells. Thus, we have discovered that ANTXR1 and ANTXR2 function as positive regulators of MT1-MMP activity.

Keywords

Male, Matrix Metalloproteinases, Membrane-Associated, Science, Cell Line, Mice, Animals, Homeostasis, Humans, Inflammation, Mice, Knockout, Neovascularization, Pathologic, Q, R, Parturition, Fibrosis, Matrix Metalloproteinases, Extracellular Matrix, Fibronectins, Parity, Myometrium, Medicine, Matrix Metalloproteinase 2, Female, Collagen, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    51
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
51
Top 10%
Top 10%
Top 10%
Green
gold