Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Cell Biologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Cell Biology
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles

Authors: C F, Cullen; H, Ohkura;

Msps protein is localized to acentrosomal poles to ensure bipolarity of Drosophila meiotic spindles

Abstract

The female meiotic spindle is commonly formed in a centrosome-independent manner. Here we report the identification of proteins at acentrosomal poles in the female meiotic spindle of Drosophila. The acentrosomal poles contain at least two proteins, Mini-spindles (Msps) and D-TACC, which are also associated with mitotic centrosomes. These proteins interact with one another and are both required for maintaining the bipolarity of acentrosomal spindles. The polar localization of Msps is dependent on D-TACC and Ncd, a kinesin-like microtubule motor. We propose that the polar localization of Msps mediated by D-TACC and Ncd may be crucial for the stabilization of meiotic spindle bipolarity.

Related Organizations
Keywords

Mutagenesis, Site-Directed, Oocytes, Animals, Drosophila Proteins, Kinesins, Drosophila, Female, Spindle Apparatus, Immunohistochemistry, Microtubule-Associated Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    139
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
139
Top 10%
Top 10%
Top 1%