<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development

Eps15 and Dap160 control synaptic vesicle membrane retrieval and synapse development
Epidermal growth factor receptor pathway substrate clone 15 (Eps15) is a protein implicated in endocytosis, endosomal protein sorting, and cytoskeletal organization. Its role is, however, still unclear, because of reasons including limitations of dominant-negative experiments and apparent redundancy with other endocytic proteins. We generated Drosophila eps15-null mutants and show that Eps15 is required for proper synaptic bouton development and normal levels of synaptic vesicle (SV) endocytosis. Consistent with a role in SV endocytosis, Eps15 moves from the center of synaptic boutons to the periphery in response to synaptic activity. The endocytic protein, Dap160/intersectin, is a major binding partner of Eps15, and eps15 mutants phenotypically resemble dap160 mutants. Analyses of eps15 dap160 double mutants suggest that Eps15 functions in concert with Dap160 during SV endocytosis. Based on these data, we hypothesize that Eps15 and Dap160 promote the efficiency of endocytosis from the plasma membrane by maintaining high concentrations of multiple endocytic proteins, including dynamin, at synapses.
- Newcastle University United Kingdom
- Baylor College of Medicine United States
- Institute of Biomedical Science United Kingdom
- Karolinska Institute Sweden
- Lancaster University United Kingdom
570, Vesicular Transport Proteins, Membrane Proteins, Nerve Tissue Proteins, Immunohistochemistry, Endocytosis, Larva, Mutation, Synapses, Animals, Drosophila Proteins, Drosophila, Synaptic Vesicles, Research Articles
570, Vesicular Transport Proteins, Membrane Proteins, Nerve Tissue Proteins, Immunohistochemistry, Endocytosis, Larva, Mutation, Synapses, Animals, Drosophila Proteins, Drosophila, Synaptic Vesicles, Research Articles
86 Research products, page 1 of 9
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2004IsAmongTopNSimilarDocuments
- 2008IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).120 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%