Ontogeny and behaviour of early macrophages in the zebrafish embryo
pmid: 10433904
Ontogeny and behaviour of early macrophages in the zebrafish embryo
Abstract In the zebrafish embryo, the only known site of hemopoieisis is an intra-embryonic blood island at the junction between trunk and tail that gives rise to erythroid cells. Using video-enhanced differential interference contrast microscopy, as well as in-situ hybridization for the expression of two new hemopoietic marker genes, draculin and leucocyte-specific plastin, we show that macrophages appear in the embryo at least as early as erythroid cells, but originate from ventro-lateral mesoderm situated at the other end of the embryo, just anterior to the cardiac field. These macrophage precursors migrate to the yolksac, and differentiate. From the yolksac, many invade the mesenchyme of the head, while others join the blood circulation. Apart from phagocytosing apoptotic corpses, these macrophages were observed to engulf and destroy large amounts of bacteria injected intravenously; the macrophages also sensed the presence of bacteria injected into body cavities that are isolated from the blood, migrated into these cavities and eradicated the microorganisms. Moreover, we observed that although only a fraction of the macrophage population goes to the site of infection, the entire population acquires an activated behaviour, similar to that of activated macrophages in mammals. Our results support the notion that in vertebrate embryos, macrophages endowed with proliferative capacity arise early from the hemopoietic lineage through a non-classical, rapid differentiation pathway, which bypasses the monocytic series that is well-documented in adult hemopoietic organs.
Genetic Markers, Membrane Glycoproteins, Microscopy, Video, Macrophages, Microfilament Proteins, Gene Expression Regulation, Developmental, Cell Differentiation, Bacillaceae Infections, Gastrula, Macrophage Activation, Hematopoietic Stem Cells, Phosphoproteins, Hematopoiesis, Mesoderm, Escherichia coli, Animals, Escherichia coli Infections, In Situ Hybridization, Bacillus subtilis, Yolk Sac
Genetic Markers, Membrane Glycoproteins, Microscopy, Video, Macrophages, Microfilament Proteins, Gene Expression Regulation, Developmental, Cell Differentiation, Bacillaceae Infections, Gastrula, Macrophage Activation, Hematopoietic Stem Cells, Phosphoproteins, Hematopoiesis, Mesoderm, Escherichia coli, Animals, Escherichia coli Infections, In Situ Hybridization, Bacillus subtilis, Yolk Sac
8 Research products, page 1 of 1
- 2018IsRelatedTo
- 1999IsAmongTopNSimilarDocuments
- 2018IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
- 2018IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).723 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
