Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Opinion in P...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Psychology
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

A review of opioid addiction genetics

Authors: Richard C Crist; Benjamin C Reiner; Wade H Berrettini;
Abstract

Opioid use disorder (OUD) affects millions of people worldwide and the risk of developing the disorder has a significant genetic component according to twin and family studies. Identification of the genetic variants underlying this inherited risk has focused on two different methods: candidate gene studies and genome-wide association studies (GWAS). The most studied candidate genes have included the mu-opioid receptor (OPRM1), the delta-opioid receptor (OPRD1), the dopamine D2 receptor (DRD2), and brain-derived neurotrophic factor (BDNF). Variants in these genes have been associated with relatively small, but reproducible, effects on OUD risk. More recently, GWAS have identified potential associations with variants in KCNG2, KCNC1, CNIH3, APBB2, and RGMA. In total the genetic associations identified so far explain only a small portion of OUD risk. GWAS of OUD is still in the early stages when compared to studies of other psychiatric disorders, such as schizophrenia, which have found many relevant variants with small effect sizes only after large meta-analyses. Substantial increases in cohort sizes will likely be necessary in the OUD field to achieve similar results. In addition, it will be important for future studies of OUD to incorporate rare variants, epigenetics, and gene × environment interactions into models in order to better explain the observed heritability.

Related Organizations
Keywords

Multifactorial Inheritance, Receptors, Opioid, delta, Receptors, Opioid, mu, Humans, Opioid-Related Disorders, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    110
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
110
Top 1%
Top 10%
Top 1%
bronze