Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Breast Cancer Resear...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Breast Cancer Research and Treatment
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Ionizing radiation or mitomycin-induced micronuclei in lymphocytes of BRCA1 or BRCA2 mutation carriers

Authors: Orland Diez; Carmen Alonso; Sara Gutiérrez-Enríquez; Montserrat Baiget; Pablo Carrasco; Teresa Ramón y Cajal; Anna Corral; +3 Authors

Ionizing radiation or mitomycin-induced micronuclei in lymphocytes of BRCA1 or BRCA2 mutation carriers

Abstract

BRCA1 and BRCA2 genes are essential in preserving the integrity of genome, and it is not unambiguously clear whether the heterozygosity status may affect BRCA1 or BRCA2 functions. This may have implications for the clinical management of BRCA1 and BRCA2 mutation carriers both in breast cancer (BC) screening modality and in cancer treatment based on DNA-damaging or DNA-repair-inhibiting drugs. We investigated whether lymphocytes carrying BRCA1 or BRCA2 mutations displayed an increased sensitivity to radiation or mitomycin C (MMC) in vitro treatments. Peripheral blood from 21 BRCA1 mutation carriers (12 with BC and 9 healthy), 24 BRCA2 carriers (13 with BC and 11 healthy), 15 familial BC patients without detected mutation in BRCA1 or BRCA2 and 16 controls without familial history of cancer (5 with BC and 11 healthy) were irradiated or treated with MMC. Chromosomal damage was measured using the cytokinesis-block micronucleus assay. We evaluated micronuclei (MN) and nucleoplasmic bridges (NPBs). The BRCA2 mutation carriers and familial BC patients without detected mutation in BRCA1 or BRCA2 showed less basal NPB than BRCA1 carriers and controls. The BRCA1 (+/-) or BRCA2 (+/-) lymphocytes did not have increased frequencies of MN or NPB after irradiation. In contrast, BRCA2 (+/-) lymphocytes presented higher levels of MN after MMC exposure than BRCA1 carriers and controls. The monoallelic BRCA1 or BRCA2 pathogenic mutations seem not to be associated with an enhanced radiosensitivity. The mutation of one BRCA2 allele conferred an increased sensitivity to MMC, presumably because of the role of this gene in the repair of MMC-induced DNA damage. This finding indicates that the MMC-induced MN analysis could be useful in identifying functional deficiencies of BRCA2 or genes related to BRCA2. Since MMC can be used as an anti-cancer drug, these data may be relevant for the management and follow-up of BRCA2 mutation carriers.

Keywords

Adult, In vitro radiation, Mitomycin, Cell Cycle, Genes, BRCA2, Genes, BRCA1, Breast Neoplasms, Micronuclei, Middle Aged, Mitomycin C, Mutation, Biomarkers, Tumor, Humans, Female, Lymphocytes, Nucleoplasmins, BRCA1 and BRCA2, Micronuclei, Chromosome-Defective

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Average
Average
Average
Green
bronze