Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Molecular...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Molecular Evolution
Article . 2003 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Evolutionary Pattern of Angiosperm bZIP Factors Homologous to the Maize Opaque2 Regulatory Protein

Authors: Michel, Vincentz; Claudia, Bandeira-Kobarg; Luciane, Gauer; Paulo, Schlögl; Adilson, Leite;

Evolutionary Pattern of Angiosperm bZIP Factors Homologous to the Maize Opaque2 Regulatory Protein

Abstract

Opaque2 (O2) is a bZIP transcriptional regulatory factor involved in the control of seed storage proteins synthesis as well as carbon and nitrogen metabolism during maize seed development. Phylogenetic analysis of a possible complete and nonredundant collection of angiosperm bZIP factors resulted in the identification of 20 angiosperm O2-homologues that defined what we call the O2 gene family. Members of the family share a highly conserved bZIP DNA binding domain and several other motifs which define important functional features. The O2 family was enriched by the identification of 25 new putative angiosperm O2 homologous genes in EST databases and in the rice genome. Based on parsimony analysis, the collection of O2 homologues was organized into one eudicot-monocot and three monocot groups of orthologous genes and two groups of eudicot genes. These results support a model of the evolution of the O2 family that involves two O2 homologous gene duplications before the separation of monocots and eudicots. Further expansion of O2 homologues resulted in at least three and one gene duplications in the monocot and eudicot lineages, respectively. O2 appears to have been the result of a monocot-specific gene duplication event, and the possibility that O2 represents a functional specialization restricted to monocots is suggested.

Related Organizations
Keywords

Binding Sites, Molecular Sequence Data, DNA, Zea mays, DNA-Binding Proteins, Evolution, Molecular, Basic-Leucine Zipper Transcription Factors, G-Box Binding Factors, Gene Duplication, Multigene Family, Amino Acid Sequence, Sequence Alignment, Conserved Sequence, Phylogeny, Plant Proteins, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Top 10%
Top 10%
Top 10%