Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Biology of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Biology of the Cell
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Importin α/β and Ran-GTP Regulate XCTK2 Microtubule Binding through a Bipartite Nuclear Localization Signal

Authors: Stephanie C, Ems-McClung; Yixian, Zheng; Claire E, Walczak;

Importin α/β and Ran-GTP Regulate XCTK2 Microtubule Binding through a Bipartite Nuclear Localization Signal

Abstract

The small GTPase Ran is essential for spindle assembly. Ran is proposed to act through its nuclear import receptors importin α and/or importin β to control the sequestration of proteins necessary for spindle assembly. To date, the molecular mechanisms by which the Ran pathway functions remain unclear. Using purified proteins, we have reconstituted Ran-regulated microtubule binding of the C-terminal kinesin XCTK2, a kinesin important for spindle assembly. We show that the tail of XCTK2 binds to microtubules and that this binding is inhibited in the presence of importin α and β (α/β) and restored by addition of Ran-GTP. The bipartite nuclear localization signal (NLS) in the tail of XCTK2 is essential to this process, because mutation of the NLS abolishes importin α/β-mediated regulation of XCTK2 microtubule binding. Our data show that importin α/β directly regulates the activity of XCTK2 and that one of the molecular mechanisms of Ran-regulated spindle assembly is identical to that used in classical NLS-driven nuclear transport.

Related Organizations
Keywords

Models, Molecular, alpha Karyopherins, Nuclear Localization Signals, Kinesins, Spindle Apparatus, Xenopus Proteins, beta Karyopherins, Microtubules, Recombinant Proteins, Protein Structure, Tertiary, Xenopus laevis, ran GTP-Binding Protein, Escherichia coli, Mutagenesis, Site-Directed, Animals, Cells, Cultured, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    134
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
134
Top 10%
Top 10%
Top 1%
bronze