Two Class XI Myosins Function in Organelle Trafficking and Root Hair Development in Arabidopsis
Two Class XI Myosins Function in Organelle Trafficking and Root Hair Development in Arabidopsis
Multigene families encoding class XI myosins are conserved in higher plants, however, little information is available on specific functions of these ubiquitous molecular motors. We isolated gene knockout mutants for all 13 class XI myosins present in Arabidopsis (Arabidopsis thaliana) genome. Inactivation of 11 myosin genes resulted in no discernible phenotypes under the normal growth conditions. In contrast, the knockouts of the remaining two myosin genes, XI-2 (formerly MYA2) and XI-K, exhibited similar defects in root hair elongation suggesting that the myosin-driven motility plays a significant role in a polar tip growth. Strikingly, inactivation of each of these myosins also reduced trafficking of Golgi stacks, peroxisomes, and mitochondria in root hairs and in leaf epidermal cells. These results indicate that myosins XI-K and XI-2 play major and overlapping roles in the cell dynamics in Arabidopsis and highlight the redundant nature of myosin function in plants.
- Oregon State University United States
Organelles, Plant Leaves, Mutagenesis, Insertional, Myosin Heavy Chains, Arabidopsis Proteins, Movement, Homozygote, Arabidopsis, Myosins, Plant Roots
Organelles, Plant Leaves, Mutagenesis, Insertional, Myosin Heavy Chains, Arabidopsis Proteins, Movement, Homozygote, Arabidopsis, Myosins, Plant Roots
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).219 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
