<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Enhancement of in vitro human tubulogenesis by endothelial cell-derived factors: implications for in vivo tubular regeneration after injury
pmid: 21561997
Enhancement of in vitro human tubulogenesis by endothelial cell-derived factors: implications for in vivo tubular regeneration after injury
Renal proximal tubular epithelium can regenerate after various insults. To examine whether the tubular repair process is regulated by surrounding peritubular capillaries, we established an in vitro human tubulogenesis model that mimics in vivo tubular regeneration after injury. In this model, HGF, a potent renotropic factor, dose dependently induced tubular structures in human renal proximal tubular epithelial cells cultured in gels. Consistent with regenerating tubular cells after injury, HGF-induced tubular structures expressed a developmental gene, Pax-2, and a mesenchymal marker, vimentin, and formed a lumen with aquaporin-1 expression. Electron microscopic analysis showed the presence of microvilli on the apical site of the lumen, suggesting that these structures are morphologically equivalent to renal tubules in vivo. When cocultured with human umbilical vein endothelial cells (HUVEC), HGF-induced tubular formation was significantly enhanced. This could not be reproduced by the addition of VEGF, basic FGF, or PDGF. Protein array revealed that HUVEC produced various matrix metalloproteinases (MMPs). The stimulatory effects of coculture with HUVEC or HUVEC-derived conditional medium were almost completely abolished by addition of the tissue inhibitor of metalloproteinase (TIMP)-1 or TIMP-2. These data suggest that endothelial cell-derived factors including MMPs play a critical role in tubulogenesis and imply a potential role of peritubular capillary endothelium as a source of factor(s) required for tubular recovery after injury.
- Gunma University Japan
Male, Hepatocyte Growth Factor, Endothelial Cells, Coculture Techniques, Matrix Metalloproteinases, Rats, Kidney Tubules, Proximal, Cell Movement, Ischemia, Animals, Humans, Regeneration, Endothelium, Vascular, Rats, Wistar, Cells, Cultured, Cell Proliferation
Male, Hepatocyte Growth Factor, Endothelial Cells, Coculture Techniques, Matrix Metalloproteinases, Rats, Kidney Tubules, Proximal, Cell Movement, Ischemia, Animals, Humans, Regeneration, Endothelium, Vascular, Rats, Wistar, Cells, Cultured, Cell Proliferation
5 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2018IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
