Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article . 2015 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Drosophila lipin interacts with insulin and TOR signaling pathways in the control of growth and lipid metabolism

Authors: Sandra, Schmitt; Rupali, Ugrankar; Stephanie E, Greene; Meenakshi, Prajapati; Michael, Lehmann;

Drosophila lipin interacts with insulin and TOR signaling pathways in the control of growth and lipid metabolism

Abstract

Lipin proteins have key functions in lipid metabolism, acting as both phosphatidate phosphatases (PAPs) and nuclear regulators of gene expression. We show that the insulin and TORC1 pathways independently control functions of Drosophila dLipin. Reduced signaling through the insulin receptor strongly enhances defects caused by dLipin deficiency in fat body development, whereas reduced signaling through TORC1 leads to translocation of dLipin into the nucleus. Reduced expression of dLipin results in decreased signaling through the insulin receptor-controlled PI3K/Akt pathway and increased hemolymph sugar levels. Consistent with this, downregulation of dLipin in fat body cell clones causes a strong growth defect. The PAP, but not the nuclear activity of dLipin is required for normal insulin pathway activity. Reduction of other enzymes of the glycerol-3 phosphate pathway similarly affects insulin pathway activity, suggesting an effect mediated by one or more metabolites associated with the pathway. Together, our data show that dLipin is subject to intricate control by the insulin and TORC1 pathways and that the cellular status of dLipin impacts how fat body cells respond to signals relayed through the PI3K/Akt pathway.

Keywords

Cell Nucleus, TOR Serine-Threonine Kinases, Active Transport, Cell Nucleus, Mechanistic Target of Rapamycin Complex 1, Lipid Metabolism, Phosphatidylinositol 3-Kinases, Drosophila melanogaster, Multiprotein Complexes, Animals, Drosophila Proteins, Proto-Oncogene Proteins c-akt, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Average
Top 10%
bronze