Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The EMBO Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2009 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The EMBO Journal
Article . 2009
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2009
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Article . 2009
Data sources: HAL-CEA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions

H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation

Authors: Pinskaya, Marina; Gourvennec, Stéphanie; Morillon, Antonin;

H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation

Abstract

Set1-dependent H3K4 di- and tri-methylation (H3K4me2/3) have been associated with active transcription. Recent data indicate that the H3K4me2/3 also plays a poorly characterized RNA-dependent repressive role. Here, we show that GAL1 promoter is attenuated by the H3K4me2/3 deposited by cryptic transcription. The H3K4me2/3 delay the recruitment of RNA polymerase II (RNAPII) and TBP on GAL1 promoter. Inactivation of RNA decay components revealed the existence of the RNAPII-dependent unstable RNAs, initiating upstream of GAL1 (GAL1ucut). GAL1ucut RNAs are synthesized in glucose and require the Reb1 transcription factor. Consistent with a regulatory function of the cryptic transcription, Reb1 depletion leads to a decrease of H3K4me3 on GAL10-GAL1 locus in glucose and to an acceleration of GAL1 induction. A candidate approach shows that the RPD3 histone deacetylase attenuates GAL1 induction and is tethered at the GAL10-GAL1 locus by H3K4me2/3 upon repression. Strikingly, Set1-dependent Rpd3 recruitment represses also the usage of a hidden promoter within SUC2, suggesting a general function for H3K4me2/3 in promoter fidelity. Our data support a model wherein certain promoters are embedded in a repressive chromatin controlled by cryptic transcription.

Keywords

Cytoplasm, Saccharomyces cerevisiae Proteins, Transcription, Genetic, Lysine, RNA Stability, Saccharomyces cerevisiae, Methylation, Histone Deacetylases, Histones, Repressor Proteins, Gene Expression Regulation, Fungal, [SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology, RNA Polymerase II, RNA, Messenger, Promoter Regions, Genetic, Protein Binding, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    145
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
145
Top 10%
Top 10%
Top 1%
gold