Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Cancer
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Overexpression of Sp1 leads to p53‐dependent apoptosis in cancer cells

Authors: Jian-Ying, Chuang; Chien-Hsing, Wu; Ming-Derg, Lai; Wen-Chang, Chang; Jan-Jong, Hung;

Overexpression of Sp1 leads to p53‐dependent apoptosis in cancer cells

Abstract

AbstractNumerous studies have documented that Sp1 expression level were elevated in various human cancers. However, the promoters of many pro‐apoptotic genes have been found to contain the Sp1 binding elements and are activated by Sp1 overexpression. To better understand the role and the mechanism of increased Sp1 levels on apoptosis, we used adenovirus to ectopically express GFP‐Sp1 protein in various cancer cell lines. First, in HeLa and A549 cells, we found that Sp1 overexpression suppressed the cell growth and increased the detection of sub‐G1 fraction, caspase‐3 cleavage, and annexin‐V signal revealed that apoptosis occurred. Furthermore, when cells entered the mitotic stage, the cell apoptosis was induced by Sp1 overexpression through affecting mitotic chromatin packaging. We also verified that p53 protein was accumulated and activated the p53‐dependent apoptotic pathways in the wild‐type p53 cells but not in the p53‐mutated or p53‐deleted cell lines when these cells were infected with adeno‐GFP‐Sp1 virus. In addition, A549 (p53+/+) cells could be protected from apoptosis under Sp1 overexpression when p53 was knockdown by p53 shRNA. Finally, H1299 (p53−/−) cell viability was significantly inhibited by adeno‐GFP‐Sp1 virus infection in the expression of p53. In conclusion, p53 was an essential factor for Sp1 overexpression‐induced apoptotic cell death in transforming cells. © 2009 UICC

Related Organizations
Keywords

Cyclin-Dependent Kinase Inhibitor p21, Cell Survival, Sp1 Transcription Factor, Apoptosis, Chromatin, Gene Expression Regulation, Neoplastic, Cell Line, Tumor, Neoplasms, Tumor Suppressor Protein p14ARF, Humans, Tumor Suppressor Protein p53, Cyclin-Dependent Kinase Inhibitor p16

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 10%
Top 10%
Top 10%
bronze
Related to Research communities
Cancer Research