Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis
Amino acid transporters of lower eukaryotes: regulation, structure and topogenesis
Lower eukaryotes such as the yeast Saccharomyces cerevisiae and the filamentous fungus Aspergillus nidulans possess a multiplicity of amino acid transporters or permeases which exhibit different properties with respect to substrate affinity, specificity, capacity and regulation. Regulation of amino acid uptake in response to physiological conditions of growth is achieved principally by a dual mechanism; control of gene expression, mediated by a complex interplay of pathway-specific and wide-domain transcription regulatory proteins, and control of transport activities, mediated by a series of protein factors, including a kinase, and possibly, by amino acids. All fungal and a number of bacterial amino acid permeases show significant sequence similarities (33-62% identity scores in binary comparisons), revealing a unique transporter family conserved across the prokaryotic-eukaryotic boundary. Prediction of the topology of this transporter family utilizing a multiple sequence alignment strongly suggests the presence of a common structural motif consisting of 12 alpha-helical putative transmembrane segments and cytoplasmically located N- and C-terminal hydrophilic regions. Interestingly, recent genetic and molecular results strongly suggest that yeast amino acid permeases are integrated into the plasma membrane through a specific intracellular translocation system. Finally, speculating on their predicted structure and on amino acid sequence similarities conserved within this family of permeases reveals regions of putative importance in amino acid transporter structure, function, post-translational regulation or biogenesis.
Amino Acid Transport Systems, Sequence Homology, Amino Acid, Protein Conformation, Membrane Transport Proteins, Biological Transport, Saccharomyces cerevisiae, Aspergillus nidulans, Eukaryotic Cells, Gene Expression Regulation, Fungal, Amino Acids, Carrier Proteins
Amino Acid Transport Systems, Sequence Homology, Amino Acid, Protein Conformation, Membrane Transport Proteins, Biological Transport, Saccharomyces cerevisiae, Aspergillus nidulans, Eukaryotic Cells, Gene Expression Regulation, Fungal, Amino Acids, Carrier Proteins
19 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).91 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
