Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1986 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Exchange of guanine nucleotide between GTP-binding proteins that regulate neuronal adenylate cyclase.

Authors: S, Hatta; M M, Marcus; M M, Rasenick;

Exchange of guanine nucleotide between GTP-binding proteins that regulate neuronal adenylate cyclase.

Abstract

GTP-binding proteins have been demonstrated to stimulate and inhibit rat brain adenylate cyclase without the prior addition of hormone. Exposure of rat cerebral cortex membranes to hydrolysis-resistant GTP analogs results in inhibition (or stimulation) of adenylate cyclase, which persists subsequent to buffer washing. The hydrolysis-resistant GTP photoaffinity probe P3-(4-azidoanilido)-P1-5' GTP (AAGTP) can promote a similar persistent inhibition of adenylate cyclase, and, after removal of unbound AAGTP and subsequent UV photolysis, AAGTP is covalently linked to the 40-kDa inhibitory GTP binding protein, GNi (inhibitory guanine nucleotide binding regulatory subunit of adenylate cyclase). Under conditions where the persistent inhibition of adenylate cyclase is overcome by subsequent incubation with 5'-guanylyl imidodiphosphate or NaF, AAGTP bound to the 40-kDa GNi protein is diminished while that bound to the 42-kDa stimulatory GTP-binding protein (GNs) is increased. Additionally, we have identified a 32-kDa protein that binds AAGTP with an affinity similar to that of GNs. This protein does not appear to be a byproduct of proteolysis as demonstrated by Staphylococcus aureus V8 protease digestion experiments, and it is not a substrate for ADP-ribosylation by bacterial toxins. The sum of the AAGTP bound by the GNi and GNs proteins is constant, and the transfer of nonphotoactivated AAGTP to GNs from GNi is stable to buffer washing. Furthermore, this alteration in the AAGTP-labeling pattern corresponds to the shift in adenylate cyclase from inhibition to stimulation. These data raise the possibility that hydrolysis-resistant GTP analogs might be exchanged directly between the GNi and GNs and that there exists some interaction between those proteins in the regulation of adenylate cyclase activity.

Related Organizations
Keywords

Cerebral Cortex, Male, Azides, Photochemistry, Synaptic Membranes, Affinity Labels, Rats, Enzyme Activation, Molecular Weight, Kinetics, GTP-Binding Proteins, Adenylyl Cyclase Inhibitors, Animals, Guanosine Triphosphate, Adenylyl Cyclases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    64
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
64
Average
Top 10%
Top 10%
bronze