Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ EMBO Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EMBO Reports
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
EMBO Reports
Article . 2023
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
https://doi.org/10.1101/2022.0...
Article . 2022 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Deregulations of miR‐1 and its target Multiplexin promote dilated cardiomyopathy associated with myotonic dystrophy type 1

Authors: Anissa Souidi; Masayuki Nakamori; Monika Zmojdzian; Teresa Jagla; Yoan Renaud; Krzysztof Jagla;

Deregulations of miR‐1 and its target Multiplexin promote dilated cardiomyopathy associated with myotonic dystrophy type 1

Abstract

AbstractMyotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults. It is caused by the excessive expansion of noncoding CTG repeats, which when transcribed affects the functions of RNA‐binding factors with adverse effects on alternative splicing, processing, and stability of a large set of muscular and cardiac transcripts. Among these effects, inefficient processing and down‐regulation of muscle‐ and heart‐specific miRNA, miR‐1, have been reported in DM1 patients, but the impact of reduced miR‐1 on DM1 pathogenesis has been unknown. Here, we use Drosophila DM1 models to explore the role of miR‐1 in cardiac dysfunction in DM1. We show that miR‐1 down‐regulation in the heart leads to dilated cardiomyopathy (DCM), a DM1‐associated phenotype. We combined in silico screening for miR‐1 targets with transcriptional profiling of DM1 cardiac cells to identify miR‐1 target genes with potential roles in DCM. We identify Multiplexin (Mp) as a new cardiac miR‐1 target involved in DM1. Mp encodes a collagen protein involved in cardiac tube formation in Drosophila. Mp and its human ortholog Col15A1 are both highly enriched in cardiac cells of DCM‐developing DM1 flies and in heart samples from DM1 patients with DCM, respectively. When overexpressed in the heart, Mp induces DCM, whereas its attenuation rescues the DCM phenotype of aged DM1 flies. Reduced levels of miR‐1 and consecutive up‐regulation of its target Mp/Col15A1 might be critical in DM1‐associated DCM.

Keywords

Adult, Cardiomyopathy, Dilated, MicroRNAs, Animals, Humans, Myotonic Dystrophy, Heart, Drosophila, Articles, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%
Green
gold