Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Medicine R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Medicine Reports
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
Data sources: PubMed Central
Molecular Medicine Reports
Article . 2017 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Upregulation of long noncoding RNA AP003419.16 predicts high risk of aging-associated idiopathic pulmonary fibrosis

Authors: Hao, Xiaoyan; Du, Yufeng; Qian, Li; Li, Dan; Liu, Xuejun;

Upregulation of long noncoding RNA AP003419.16 predicts high risk of aging-associated idiopathic pulmonary fibrosis

Abstract

Long noncoding RNAs (lncRNAs) are able to regulate adjacent genes and thus participate in the incidence in the present study has identified lncRNA AP003419.16, adjacent to the protein‑coding gene ribosomal protein S6 kinase B‑2 (RPS6KB2). RPS6KB2 is believed to be involved in the process of aging and idiopathic pulmonary fibrosis (IPF), due to its activation by growth factors and regulation by the protein kinase mTOR signaling pathway. The results of the present study indicated that the expression of AP003419.16 increased significantly in patients with IPF, whereas its adjacent gene ribosomal protein S6 kinase B‑2 increased simultaneously. AP003419.16 expression may be used to predict an increased risk of aging‑associated IPF. The present study provided a molecular hypothesis of IPF occurrence in the aging process, in addition to novel molecular targets for the clinical treatment of IPF.

Related Organizations
Keywords

TOR Serine-Threonine Kinases, Age Factors, Computational Biology, Reproducibility of Results, Ribosomal Protein S6 Kinases, 70-kDa, Articles, Idiopathic Pulmonary Fibrosis, Up-Regulation, Gene Expression Regulation, Humans, Genetic Predisposition to Disease, RNA Interference, RNA, Long Noncoding, RNA, Messenger, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green
hybrid