Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Mechanisms of Develo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Mechanisms of Development
Article . 2003
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Mechanisms of Development
Article . 2003 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions

A targeted gain of function screen in the embryonic CNS of Drosophila

Authors: McGovern, Vicki L; Pacak, Christina A; Sewell, Stephen T; Turski, Michelle L; Seeger, Mark A;

A targeted gain of function screen in the embryonic CNS of Drosophila

Abstract

In order to identify genes involved in the development of the central nervous system (CNS) we have undertaken a gain of function screen in the embryonic CNS of Drosophila. Transposable P-elements and the UAS/GAL4 system were used to initiate transcription of genes in a pan-neural pattern using scaGAL4. Over 4100 individual P-element insertion lines were screened with monoclonal antibodies BP102 and 1D4 to visualize axon pathways. Twenty-five P-element insertions corresponding to 18 genes resulted in aberrant CNS axon pathfinding when misexpressed with scaGAL4. Genes involved in axon guidance, embryonic patterning, and cell cycle regulation were isolated. In addition, we identified several zinc finger transcription factors not previously implicated in axon guidance or CNS development. This group includes Squeeze, Kruppel homolog-1, Hepatocyte nuclear factor 4, and two uncharacterized genes, CG11966 and CG9650. Calnexin99A, a putative molecular chaperone, was isolated as well.

Related Organizations
Keywords

Embryology, Calnexin, Cell Cycle, Phosphoproteins, Nervous System, Axons, DNA-Binding Proteins, Hepatocyte Nuclear Factor 4, Animals, Drosophila, Developmental Biology, Body Patterning, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    21
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
21
Average
Average
Average
hybrid