iTRAQ-based proteomics analysis on insomnia rats treated with Mongolian medical warm acupuncture
iTRAQ-based proteomics analysis on insomnia rats treated with Mongolian medical warm acupuncture
Abstract Objective: To explore the proteomic changes in the hypothalamus of rats treated with Mongolian medical warm acupuncture for insomnia therapy based proteomics. Method: We used an iTRAQ-based quantitative proteomic approach to identify proteins that potential molecular mechanisms involved in the treatment of insomnia by Mongolian medical warm acupuncture. Result: In total, 7477 proteins were identified, of which 36 proteins showed increased levels and 45 proteins showed decreased levels in insomnia model group (M) compared with healthy control group (C), 72 proteins showed increased levels and 44 proteins showed decreased levels from the warm acupuncture treated insomnia group (W) compared with healthy controls (C), 28 proteins showed increased levels and 17 proteins showed decreased levels from the warm acupuncture-treated insomnia group (W) compared with insomnia model group (M). Compared with healthy control groups, warm acupuncture-treated insomnia group showed obvious recovered. Bioinformatics analysis indicated that up-regulation of neuroactive ligand–receptor interaction and oxytocin signaling was the most significantly elevated regulate process of Mongolian medical warm acupuncture treatment for insomnia. Proteins showed that increased/decreased expression in the warm acupuncture-treated insomnia group included Prolargin (PRELP), NMDA receptor synaptonuclear-signaling and neuronal migration factor (NSMF), Transmembrane protein 41B (TMEM41B) and Microtubule-associated protein 1B (MAP1B) to adjust insomnia. Conclusion: A combination of findings in the present study suggest that warm acupuncture treatment is efficacious in improving sleep by regulating the protein expression process in an experimental rat model and may be of potential benefit in treating insomnia patients with the added advantage with no adverse effects.
- Inner Mongolia Medical College China (People's Republic of)
Male, Medicine, Mongolian Traditional, Proteomics, Extracellular Matrix Proteins, Acupuncture Therapy, Fenclonine, Hypothalamus, Nerve Tissue Proteins, Oxytocin, Rats, Up-Regulation, Disease Models, Animal, Sleep Initiation and Maintenance Disorders, Animals, Humans, Microtubule-Associated Proteins, Neuroscience
Male, Medicine, Mongolian Traditional, Proteomics, Extracellular Matrix Proteins, Acupuncture Therapy, Fenclonine, Hypothalamus, Nerve Tissue Proteins, Oxytocin, Rats, Up-Regulation, Disease Models, Animal, Sleep Initiation and Maintenance Disorders, Animals, Humans, Microtubule-Associated Proteins, Neuroscience
43 Research products, page 1 of 5
- 2018IsRelatedTo
- 2012IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2019IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
