ER–mitochondria contact sites in yeast: beyond the myths of ERMES
pmid: 25836730
ER–mitochondria contact sites in yeast: beyond the myths of ERMES
A standout feature of eukaryotic cells is the presence of organelles with distinct chemical compositions and physical properties, which aid in the accomplishment of specialized metabolic tasks. This complex topology, however, makes a permanent crosstalk between the organelles a necessity for the coordination of cellular function. While molecule exchange between organelles via the vesicular transport system has been extensively studied, communication via direct connections has only recently become a new matter of interest. These direct connections termed membrane contact sites (MCSs) represent zones of close proximity (10-30nm) between two organelles. Research in the past years has revealed a number of MCSs especially between the ER and almost every other organelle [1(•)]. In particular, the MCSs between the ER and the mitochondria have undergone intense investigation. While the quest for ER-mitochondria MCS components in human cells has led to the revelation of an ever growing number of potential factors, studies in the simpler eukaryote Saccharomyces cerevisiae revealed the actual existence of a molecular tether between the two organelles [2(••)].
- Institute of Biochemistry Switzerland
- ETH Zurich Switzerland
Saccharomyces cerevisiae Proteins, Animals, Humans, Biological Transport, Saccharomyces cerevisiae, Endoplasmic Reticulum, Mitochondrial Dynamics, Mitochondria
Saccharomyces cerevisiae Proteins, Animals, Humans, Biological Transport, Saccharomyces cerevisiae, Endoplasmic Reticulum, Mitochondrial Dynamics, Mitochondria
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).114 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
