<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Two-Step Size-Exclusion Nanofiltration of Prothrombin Complex Concentrate Using Nanocellulose-Based Filter Paper
Two-Step Size-Exclusion Nanofiltration of Prothrombin Complex Concentrate Using Nanocellulose-Based Filter Paper
Coagulation Factor IX-rich protrhombin complex concentrate (FIX-PCC) is a therapeutic biologic product that consists of a mixture of several human plasma-derived proteins, useful for treating hemophilia B. Due to its complex composition, FIX-PCC is very challenging to bioprocess through virus removing nanofilters in order to ensure its biosafety. This article describes a two-step filtration process of FIX-PCC using a nanocellulose-based filter paper with tailored porosity. The filters were characterized with scanning electron microscopy (SEM), cryoporometry with differential scanning calorimetry, and nitrogen gas sorption. Furthermore, in order to probe the filter’s cut-off size rejection threshold, removal of small- and large-size model viruses, i.e., ΦX174 (28 nm) and PR772 (70 nm), was evaluated. The feed, pre-filtrate, and permeate solutions were characterized with mass-spectrometric proteomic analysis, dynamic light scattering (DLS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and analytical size-exclusion high-performance liquid chromatography (SEHPLC). By sequential filtration through 11 μm pre-filter and 33 μm virus removal filter paper, it was possible to achieve high product throughput and high virus removal capacity. The presented approach could potentially be applied for bioprocessing other protein-based drugs.
-  Uppsala University Sweden
 -  Federal State Institution Hematology Research Center Russian Federation
 -  Uppsala University Sweden
 -  Uppsala University Finland
 - Uppsala University
 
Cladophora cellulose, QH301-705.5, virus removal filtration, protein aggregates, Microbiology, Article, Mikrobiologi, hemophilia B, hemophilia b, mille-feuille filter, Biology (General), Mille-feuille filter, cladophora cellulose
Cladophora cellulose, QH301-705.5, virus removal filtration, protein aggregates, Microbiology, Article, Mikrobiologi, hemophilia B, hemophilia b, mille-feuille filter, Biology (General), Mille-feuille filter, cladophora cellulose
44 Research products, page 1 of 5
- 2017IsRelatedTo
 - 2017IsRelatedTo
 - 2017IsRelatedTo
 - 2017IsRelatedTo
 - 2017IsRelatedTo
 - 2017IsRelatedTo
 - 2017IsRelatedTo
 - 2017IsRelatedTo
 - 2017IsRelatedTo
 - 2017IsRelatedTo
 
chevron_left - 1
 - 2
 - 3
 - 4
 - 5
 chevron_right 
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).7 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average 
