Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular and Cellul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biology
Article . 1987 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
Molecular and Cellular Biology
Article . 1987 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions

Phosphorylation of the Saccharomyces cerevisiae equivalent of ribosomal protein S6 has no detectable effect on growth.

Authors: S P, Johnson; J R, Warner;

Phosphorylation of the Saccharomyces cerevisiae equivalent of ribosomal protein S6 has no detectable effect on growth.

Abstract

The phosphorylation of mammalian ribosomal protein S6 is affected by a variety of agents, including growth factors and tumor promoters, as well as by expressed oncogenes. Its potential role in the regulation of protein synthesis has been the object of much study. We have developed strains of Saccharomyces cerevisiae in which the phosphorylatable serines of the equivalent ribosomal protein (S10) were converted to alanines by site-directed mutagenesis. The S10 of such cells is not phosphorylated. Comparison of these cells with the parental cells, whose genomes differ by only six nucleotides, revealed no differences in the lag phase or logarithmic phase of a growth cycle, in growth on different carbon sources, in sporulation, or in sensitivity to heat shock. We conclude that in S. cerevisiae the phosphorylation of ribosomal protein S10 may play no role in regulating the synthesis of proteins. This conclusion leads one to ask whether certain protein phosphorylations are simply the adventitious, if easily observable, result of the imperfect specificity of one or another protein kinase.

Related Organizations
Keywords

Ribosomal Proteins, Kinetics, Ribosomal Protein S6, Genes, Genotype, Genes, Fungal, Mutation, Amino Acid Sequence, Saccharomyces cerevisiae, Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    61
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
61
Top 10%
Top 1%
Top 10%
bronze