PML Colocalizes with and Stabilizes the DNA Damage Response Protein TopBP1
PML Colocalizes with and Stabilizes the DNA Damage Response Protein TopBP1
The PML tumor suppressor gene is consistently disrupted by t(15;17) in patients with acute promyelocytic leukemia. Promyelocytic leukemia protein (PML) is a multifunctional protein that plays essential roles in cell growth regulation, apoptosis, transcriptional regulation, and genome stability. Our study here shows that PML colocalizes and associates in vivo with the DNA damage response protein TopBP1 in response to ionizing radiation (IR). Both PML and TopBP1 colocalized with the IR-induced bromodeoxyuridine single-stranded DNA foci. PML and TopBP1 also colocalized with Rad50, Brca1, ATM, Rad9, and BLM. IR and interferon (IFN) coinduce the expression levels of both TopBP1 and PML. In PML-deficient NB4 cells, TopBP1 was unable to form IR-induced foci. All-trans-retinoic acid induced reorganization of the PML nuclear body (NB) and reappearance of the IR-induced TopBP1 foci. Inhibition of PML expression by siRNA is associated with a significant decreased in TopBP1 expression. Furthermore, PML-deficient cells express a low level of TopBP1, and its expression cannot be induced by IR or IFN. Adenovirus-mediated overexpression of PML in PML(-/-) mouse embryo fibroblasts substantially increased TopBP1 expression, which colocalized with the PML NBs. These studies demonstrated a mechanism of PML-dependent expression of TopBP1. PML overexpression induced TopBP1 protein but not the mRNA expression. Pulse-chase labeling analysis demonstrated that PML overexpression stabilized the TopBP1 protein, suggesting that PML plays a role in regulating the stability of TopBP1 in response to IR. Together, our findings demonstrate that PML regulates TopBP1 functions by association and stabilization of the protein in response to IR-induced DNA damage.
- The University of Texas System United States
- The University of Texas MD Anderson Cancer Center United States
DNA Repair, Amino Acid Motifs, Blotting, Western, DNA, Single-Stranded, Nuclear Proteins, Promyelocytic Leukemia Protein, Blotting, Northern, Precipitin Tests, Adenoviridae, Neoplasm Proteins, DNA-Binding Proteins, Bromodeoxyuridine, Microscopy, Fluorescence, Radiation, Ionizing, Humans, Interferons, Carrier Proteins, DNA Damage, Plasmids, Protein Binding
DNA Repair, Amino Acid Motifs, Blotting, Western, DNA, Single-Stranded, Nuclear Proteins, Promyelocytic Leukemia Protein, Blotting, Northern, Precipitin Tests, Adenoviridae, Neoplasm Proteins, DNA-Binding Proteins, Bromodeoxyuridine, Microscopy, Fluorescence, Radiation, Ionizing, Humans, Interferons, Carrier Proteins, DNA Damage, Plasmids, Protein Binding
17 Research products, page 1 of 2
- 2016IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2010IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).94 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
