Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Cell
Article . 2013
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Cell
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Cleavage of TFIIA by Taspase1 Activates TRF2-Specified Mammalian Male Germ Cell Programs

Authors: Oyama, Toshinao; Sasagawa, Satoru; Takeda, Shugaku; Hess, Rex A.; Lieberman, Paul M.; Cheng, Emily H.; Hsieh, James J.;

Cleavage of TFIIA by Taspase1 Activates TRF2-Specified Mammalian Male Germ Cell Programs

Abstract

The evolution of tissue-specific general transcription factors (GTFs), such as testis-specific TBP-related factor 2 (TRF2), enables the spatiotemporal expression of highly specialized genetic programs. Taspase1 is a protease that cleaves nuclear factors MLL1, MLL2, TFIIAα-β, and ALFα-β (TFIIAτ). Here, we demonstrate that Taspase1-mediated processing of TFIIAα-β drives mammalian spermatogenesis. Both Taspase1(-/-) and noncleavable TFIIAα-βnc/nc testes release immature germ cells with impaired transcription of Transition proteins (Tnp) and Protamines (Prm), exhibiting chromatin compaction defects and recapitulating those observed with TRF2(-/-) testes. Although the unprocessed TFIIA still complexes with TRF2, this complex is impaired in targeting and thus activating Tnp1 and Prm1 promoters. The current study presents a paradigm in which a protease (Taspase1) cleaves a ubiquitously expressed GTF (TFIIA) to enable tissue-specific (testis) transcription, meeting the demand for sophisticated regulation of distinct subsets of genes in higher organisms.

Keywords

Male, Mice, Knockout, Chromosomal Proteins, Non-Histone, Gene Expression Regulation, Developmental, Histone-Lysine N-Methyltransferase, Spermatozoa, Enzyme Activation, Mice, Inbred C57BL, Mice, Transcription Factor TFIIA, Endopeptidases, Animals, Telomeric Repeat Binding Protein 2, Protamines, Promoter Regions, Genetic, Spermatogenesis, Myeloid-Lymphoid Leukemia Protein, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
hybrid