Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Biology Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Biology Reports
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Characterization of a novel ERF transcription factor in Artemisia annua and its induction kinetics after hormones and stress treatments

Authors: Xu, Lu; Weimin, Jiang; Ling, Zhang; Fangyuan, Zhang; Qian, Shen; Tao, Wang; Yunfei, Chen; +5 Authors

Characterization of a novel ERF transcription factor in Artemisia annua and its induction kinetics after hormones and stress treatments

Abstract

The full-length cDNA sequence of AaERF3 was cloned and characterized from Artemisia annua. The bioinformatic analysis and phylogenetic tree analysis implied that the AaERF3 encoded a putative protein of 193 amino acids which formed a closely related subgroup with AtERF1, ERF1 and ORA59 in Arabidopsis. The result of subcellular localization showed that AaERF3 targeted to both of the nuclei and the cytoplasm. The qRT-PCR analysis showed that Green young alabastrums had the highest expression level of AaERF3 in the 5-months-old plants. The qRT-PCR analysis also revealed that ABA, Wound and Cold treatments significantly enhanced the transcript expression of AaERF3. MeJA and Ethylene treatment could also slightly induce the accumulation of AaERF3 transcription.

Related Organizations
Keywords

Nicotiana, Transcriptional Activation, DNA, Complementary, Molecular Sequence Data, Sequence Analysis, DNA, Artemisia annua, Plant Epidermis, Kinetics, Protein Transport, Plant Growth Regulators, Transcription Factor AP-2, Gene Expression Regulation, Plant, Organ Specificity, Stress, Physiological, Cells, Cultured, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Top 10%