Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Human Immunologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Immunology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Role of the Fyn −93A>G polymorphism (rs706895) in acute rejection after liver transplantation

Authors: Hansjörg, Thude; Kathrin, Kramer; Sven, Peine; Martina, Sterneck; Björn, Nashan; Martina, Koch;

Role of the Fyn −93A>G polymorphism (rs706895) in acute rejection after liver transplantation

Abstract

The tyrosine kinase Fyn phosphorylates tyrosine residues on key targets involved in early T-cell signal transduction. T-cell signal transduction is one essential step for acute transplant rejection. The aim of this study was to evaluate the association of Fyn -93A>G single nucleotide polymorphism (SNP) (rs706895) with the susceptibility to acute rejection episodes in liver transplantation. In total, 72 liver transplant recipients with one biopsy proven acute rejection (S-BPAR), 56 with multiple BPAR (M-BPAR), 105 without BPAR (No-BPAR), and 145 healthy controls were enrolled in this case-control study. The SNP was genotyped by polymerase chain reaction-allele specific restriction enzyme analysis (PCR-ASRA) and was analyzed for a recessive and a dominant model. The Fyn -93G allele exhibits in healthy controls a statistically significant lower frequency than in liver recipients (18% vs. 24%; p=0.046) or in liver recipients with BPAR (18% vs. 27%; p=0.017). However, the genotype and allele frequencies of the Fyn -93A>G SNP demonstrate no significant differences between recipients with acute rejection episodes (S-BPAR and M-BPAR) and No-BPAR recipients. Thus our results provide no evidence that the Fyn -93A>G SNP contributes to the susceptibility to acute liver transplant rejection in a Caucasian population.

Keywords

Adult, Graft Rejection, Male, Genotype, Middle Aged, Proto-Oncogene Proteins c-fyn, Polymorphism, Single Nucleotide, Liver Transplantation, Gene Frequency, Case-Control Studies, Humans, Female, Genetic Predisposition to Disease, Alleles, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average