Powered by OpenAIRE graph

Effect of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in humans

Authors: Pertti J. Neuvonen; Janne T. Backman; Yi Han; Mikko Niemi; Mikko Neuvonen; Xiaoqiang Xiang; Annikka Kalliokoski; +2 Authors

Effect of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in humans

Abstract

Organic anion transporting polypeptide 1B1 (OATP1B1, encoded by SLCO1B1) is a sinusoidal influx transporter of human hepatocytes. Our aim was to characterize the role of OATP1B1 in the hepatic uptake of bile acids in vivo.Fasting blood samples were drawn from 24 healthy volunteers with SLCO1B1 c.388AA-c.521TT (*1A/*1A) genotype, eight with c.388GG-c.521TT (*1B/*1B) genotype, 24 with c.521TC genotype, and nine with c.521CC genotype. Plasma concentrations of 15 endogenous bile acids, their synthesis marker, and cholesterol were determined by liquid chromatography-tandem mass spectrometry.The concentrations of ursodeoxycholic acid, glycoursodeoxycholic acid, chenodeoxycholic acid, and glycochenodeoxycholic acid were approximately 50-240% higher in individuals with the SLCO1B1 c.521CC, c.521TC, or c.388AA-c.521TT genotype than in those with the c.388GG-c.521TT genotype (P<0.05), with the largest differences seen between the c.521CC and c.388GG-c.521TT individuals. The concentration of tauroursodeoxycholic acid was approximately 120% higher in individuals with the c.521TC genotype and that of taurochenodeoxycholic acid 110% higher in individuals with the c.521CC or c.521TC genotype than in those with the c.388GG-c.521TT genotype (P<0.05). The cholic acid concentration was approximately 30% higher in individuals with the c.521CC or c.388AA-c.521TT genotype than in those with the c.388GG-c.521TT genotype (P<0.05), but its conjugates remained unaffected by the genotype. The bile acid synthesis marker 7alpha-hydroxy-4-cholesten-3-one/cholesterol concentration ratio was 62 or 45% higher in the c.388AA-c.521TT participants than in the c.388GG-c.521TT or c.521TC participants, respectively (P<0.05).SLCO1B1 polymorphism considerably affects the disposition of several endogenous bile acids and bile acid synthesis marker, indicating that OATP1B1 plays an important role in the hepatic uptake of bile acids in vivo in humans.

Keywords

Adult, Male, Polymorphism, Genetic, Genotype, Liver-Specific Organic Anion Transporter 1, Organic Anion Transporters, Bile Acids and Salts, Cholesterol, Humans, Female, Biomarkers, Cholestenones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%