Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biochemical and Biop...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochemical and Biophysical Research Communications
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Guanylate cyclase-activating proteins: structure, function, and diversity

Authors: Krzysztof, Palczewski; Izabela, Sokal; Wolfgang, Baehr;

Guanylate cyclase-activating proteins: structure, function, and diversity

Abstract

The guanylate cyclase-activating proteins (GCAPs), Ca2+-binding proteins of the calmodulin gene superfamily, function as regulators of photoreceptor guanylate cyclases. In contrast to calmodulin, which is active in the Ca2+-bound form, GCAPs stimulate GCs in the [Ca2+]-free form and inhibit GCs upon Ca2+ binding. In vertebrate retinas, at least two GCAP1 and two GCs are present, a third GCAP3 is expressed in humans and fish, and at least five additional GCAP4-8 genes have been identified or are predicted in zebrafish and pufferfish. Missense mutations in GCAP1 (Y99C, I143NT, E155G, and P50L) have been associated with autosomal dominant cone dystrophy. Absence of GCAP1/2 in mice delays recovery of the photoresponse, a phenotype consistent with delay in cGMP synthesis. In the absence of GCAP2, GCAP1 supports the generation of wild-type flash responses in both rod and cone cells. Recent progress revealed an unexpected complexity of the GC-GCAP system, pointing, out a number of unsolved questions.

Related Organizations
Keywords

Calcium-Binding Proteins, Molecular Sequence Data, Zebrafish Proteins, Pineal Gland, Guanylate Cyclase-Activating Proteins, Retina, Mice, Retinal Diseases, Models, Animal, Animals, Humans, Amino Acid Sequence, Protein Processing, Post-Translational, Phylogeny

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    92
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
92
Top 10%
Top 10%
Top 10%