Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncology Reportsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncology Reports
Article
Data sources: UnpayWall
Oncology Reports
Article . 1994 . Peer-reviewed
Data sources: Crossref
Oncology Reports
Article . 2009
versions View all 2 versions

EGF stimulates uPAR expression and cell invasiveness through ERK, AP-1, and NF-κB signaling in human gastric carcinoma cells

Authors: Young Do Jung; Mi H. Kim; Ik Joo Chung; Jung S. Park; Boo A. Shin; Bong Whan Ahn; Hee J Jang; +1 Authors

EGF stimulates uPAR expression and cell invasiveness through ERK, AP-1, and NF-κB signaling in human gastric carcinoma cells

Abstract

Overexpression of epidermal growth factor (EGF) and urokinase plasminogen activator receptor (uPAR) have been observed in human gastric cancers. However, the interaction between EGF and uPAR in gastric cancer has not been well elucidated. In this study, we investigated the effect of EGF on uPAR expression and the underlying signal pathways in human gastric cancer AGS cells. EGF induced uPAR mRNA expression in a time- and concentration-dependent manner. EGF also induced uPAR promoter activity. In addition, EGF induced the activation of extracellular signal regulated kinase-1/2 (ERK-1/2) and P38 mitogen-activated protein kinase (MAPK) but not the activation of c-Jun amino terminal kinase. A specific inhibitor of MEK-1 (an upstream effector of ERK-1/2) and a dominant negative MEK-1 were able to suppress the EGF-induced uPAR promoter activity. Site-directed mutagenesis and electrophoretic mobility shift assays demonstrated that the binding sites of transcription factors, activator protein-1 (AP-1) and nuclear factor (NF)-kappaB, are involved in the EGF-induced uPAR transcription. Suppression of the EGF-induced uPAR promoter activity by the AP-1 decoy oligonuclotide, as well as expression vectors encoding mutated-type NF-kappaB-inducting kinase and I-kappaB, confirmed that the activation of AP-1 and NF-kappaB are essential for the EGF-induced uPAR upregulation. The AGS cells pretreated with EGF showed a remarkably enhanced invasiveness and this effect was partially abrogated by uPAR neutralizing antibodies and by the inhibitors of ERK-1/2, AP-1, and NF-kappaB. The above results suggest that EGF induces uPAR expression via ERK-1/2, AP-1, and NF-kappaB signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.

Related Organizations
Keywords

Mitogen-Activated Protein Kinase 1, Mitogen-Activated Protein Kinase 3, Epidermal Growth Factor, Carcinoma, NF-kappa B, Oligonucleotides, Gene Expression Regulation, Enzymologic, Receptors, Urokinase Plasminogen Activator, Gene Expression Regulation, Neoplastic, Transcription Factor AP-1, Stomach Neoplasms, Humans, Neoplasm Invasiveness, Promoter Regions, Genetic, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Average
bronze
Related to Research communities
Cancer Research