Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bloodarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Blood
Article
Data sources: UnpayWall
Blood
Article . 2008 . Peer-reviewed
Data sources: Crossref
Blood
Article . 2008
versions View all 2 versions

Deletion of murine kininogen gene 1 (mKng1) causes loss of plasma kininogen and delays thrombosis

Authors: Sergei, Merkulov; Wan-Ming, Zhang; Anton A, Komar; Alvin H, Schmaier; Ellen, Barnes; Yihua, Zhou; Xincheng, Lu; +4 Authors

Deletion of murine kininogen gene 1 (mKng1) causes loss of plasma kininogen and delays thrombosis

Abstract

AbstractHigh-molecular-weight kininogen (HK) plays an important role in the assembly of the plasma kallikrein-kinin system. While the human genome contains a single copy of the kininogen gene, 3 copies exist in the rat (1 encoding K-kininogen and 2 encoding T-kininogen). Here, we confirm that the mouse genome contains 2 homologous kininogen genes, mKng1 and mKng2, and demonstrate that these genes are expressed in a tissue-specific manner. To determine the roles of these genes in murine development and physiology, we disrupted mKng1, which is expressed primarily in the liver. mKng1−/− mice were viable, but lacked plasma HK and low-molecular-weight kininogen (LK), as well as ΔmHK-D5, a novel kininogen isoform that lacks kininogen domain 5. Moreover, despite normal tail vein bleeding times, mKng1−/− mice displayed a significantly prolonged time to carotid artery occlusion following Rose Bengal administration and laser-induced arterial injury. These results suggest that a single gene, mKng1, is responsible for production of plasma kininogen, and that plasma HK contributes to induced arterial thrombosis in mice.

Keywords

Mice, Knockout, Time Factors, Base Sequence, Kininogens, Genetic Vectors, Homozygote, Molecular Sequence Data, Thrombosis, Bradykinin, Mice, Plasma, Animals, Amino Acid Sequence, RNA, Messenger, Sequence Alignment, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    139
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
139
Top 10%
Top 10%
Top 1%
bronze