Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Psychiatryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Psychiatry
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia

Authors: L M, Camargo; V, Collura; J-C, Rain; K, Mizuguchi; H, Hermjakob; S, Kerrien; T P, Bonnert; +2 Authors

Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia

Abstract

Disrupted in Schizophrenia 1 (DISC1) is a schizophrenia risk gene associated with cognitive deficits in both schizophrenics and the normal ageing population. In this study, we have generated a network of protein-protein interactions (PPIs) around DISC1. This has been achieved by utilising iterative yeast-two hybrid (Y2H) screens, combined with detailed pathway and functional analysis. This so-called 'DISC1 interactome' contains many novel PPIs and provides a molecular framework to explore the function of DISC1. The network implicates DISC1 in processes of cytoskeletal stability and organisation, intracellular transport and cell-cycle/division. In particular, DISC1 looks to have a PPI profile consistent with that of an essential synaptic protein, which fits well with the underlying molecular pathology observed at the synaptic level and the cognitive deficits seen behaviourally in schizophrenics. Utilising a similar approach with dysbindin (DTNBP1), a second schizophrenia risk gene, we show that dysbindin and DISC1 share common PPIs suggesting they may affect common biological processes and that the function of schizophrenia risk genes may converge.

Keywords

Dysbindin, Biological Transport, Nerve Tissue Proteins, Cognition, Risk Factors, Two-Hybrid System Techniques, Dystrophin-Associated Proteins, Synapses, Schizophrenia, Humans, Carrier Proteins, Cell Division, Cytoskeleton

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    386
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
386
Top 1%
Top 1%
Top 1%
bronze