Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioorganic & Medicin...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bioorganic & Medicinal Chemistry
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

New modification strategy of matrine as Hsp90 inhibitors based on its specific L conformation for cancer treatment

Authors: Yiming, Xu; Dewang, Jing; Dong, Zhao; Yongji, Wu; Lu, Xing; Haroon, Ur Rashid; Haodong, Wang; +2 Authors

New modification strategy of matrine as Hsp90 inhibitors based on its specific L conformation for cancer treatment

Abstract

The similarity of spatial structure between radicicol and matrine urged us to perform conformation modification of matrine, followed by L-shaped matrine derivatives, 6, 12, 21a-h and 22a-h were originally designed, synthesized and evaluated for Hsp90N inhibitors as anticancer agents. TSA (Thermal Shift Assay) results indicated that 21e, 22a-c and 22e-g exhibited strong binding force against Hsp90N with∣ΔTm∣ > 3, meanwhile, MTT assay also revealed these compounds displayed potent anticancer activity with IC50 values below 25 μM against HepG2, HeLa and MDA-MB-231 cells lines. Then, compound 22g with a high ΔTm = 10.92 was chosen as a representative to perform further mechanism study. It can induce cell apoptosis, arrest the cell cycle at the S phase and decrease the expression level of Hsp90 in Hela cell. These results originally provided targeted modification strategy for matrine derivatives to serve as Hsp90 inhibitors for cancer therapy.

Keywords

Dose-Response Relationship, Drug, Molecular Conformation, Antineoplastic Agents, Apoptosis, Molecular Docking Simulation, Structure-Activity Relationship, Alkaloids, Cell Line, Tumor, Humans, HSP90 Heat-Shock Proteins, Drug Screening Assays, Antitumor, Matrines, Quinolizines, Cell Proliferation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%