Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ FEBS Lettersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
FEBS Letters
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2012
versions View all 3 versions

MiR‐26 controls LXR‐dependent cholesterol efflux by targeting ABCA1 and ARL7

Authors: Sun, Dongsheng; Zhang, Jun; Xie, Jianhong; Wei, Wei; Chen, Mantao; Zhao, Xiang;

MiR‐26 controls LXR‐dependent cholesterol efflux by targeting ABCA1 and ARL7

Abstract

Cellular cholesterol levels are tightly regulated and represent a balance of cholesterol uptake, endogenous synthesis and efflux. Although the classic transcriptional regulations of cholesterol metabolism by liver X receptors (LXRs) have been well studied, the potential effects of LXR‐responsive microRNAs (miRNAs) still need to be unveiled. Here, we describe that miR‐26, an LXR‐suppressed miRNA, inhibits the expression of the ATP‐binding cassette transporter A1 (ABCA1) and ADP‐ribosylation factor‐like 7 (ARL7), two LXR target genes which play critical roles in cholesterol efflux. These findings have not only figured out an alternative mechanism for LXR regulation, but also provided a potential therapeutic target for cholesterol metabolic disorders.

Related Organizations
Keywords

Transcription, Genetic, ABCA1, MiR-26, Cell Line, Mice, ARL7, Animals, Cholesterol efflux, 3' Untranslated Regions, DNA Primers, Liver X Receptors, Binding Sites, Base Sequence, ADP-Ribosylation Factors, Macrophages, MicroRNA, Biological Transport, Orphan Nuclear Receptors, MicroRNAs, Cholesterol, LXR, ATP-Binding Cassette Transporters, ATP Binding Cassette Transporter 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 10%
Top 10%
Top 1%
bronze