Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Nature Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature Genetics
Article
License: implied-oa
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
Data sources: PubMed Central
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Genetics
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature Genetics
Article . 2009
versions View all 3 versions

Systems genetics of complex traits in Drosophila melanogaster

Authors: Trudy F. C. Mackay; Mary Anna Carbone; Laura H Duncan; Richard F. Lyman; Eric A. Stone; Stephanie M. Rollmann; Stephanie M. Rollmann; +6 Authors

Systems genetics of complex traits in Drosophila melanogaster

Abstract

Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines. We observed 10,096 genetically variable transcripts and high heritabilities for all organismal phenotypes. The transcriptome is highly genetically intercorrelated, forming 241 transcriptional modules. Modules are enriched for transcripts in common pathways, gene ontology categories, tissue-specific expression and transcription factor binding sites. The high degree of transcriptional connectivity allows us to infer genetic networks and the function of predicted genes from annotations of other genes in the network. Regressions of organismal phenotypes on transcript abundance implicate several hundred candidate genes that form modules of biologically meaningful correlated transcripts affecting each phenotype. Overlapping transcripts in modules associated with different traits provide insight into the molecular basis of pleiotropy between complex traits.

Keywords

Male, Base Sequence, Sequence Homology, Amino Acid, Molecular Sequence Data, Chromosome Mapping, Genetic Variation, Article, Drosophila melanogaster, Genetics, Population, Phenotype, Quantitative Trait, Heritable, Animals, Female, Gene Regulatory Networks, Tissue Distribution, Amino Acid Sequence, RNA, Messenger, Animals, Inbred Strains

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    453
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
453
Top 1%
Top 1%
Top 0.1%
Green
hybrid