Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Cell Biolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Cell Biology
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

To degrade or release: ubiquitin-chain remodeling

Authors: Daniel A, Kraut; Sumit, Prakash; Andreas, Matouschek;

To degrade or release: ubiquitin-chain remodeling

Abstract

The proteasome controls many cellular processes by degrading a large number of regulatory proteins. Most proteins are targeted to the proteasome through covalent tagging by a chain consisting of several copies of the small protein ubiquitin. Finley and coworkers have now discovered two proteins, Hul5 and Ubp6, which regulate degradation further, when bound to the proteasome. Hul5 promotes degradation by extending the number of ubiquitin moieties in the tag on substrates, whereas Ubp6 antagonizes degradation by trimming ubiquitin from the tag. The balance between these two opposing activities might control the substrate specificity of the proteasome and adjusting the balance would provide a new level of degradation control.

Related Organizations
Keywords

Proteasome Endopeptidase Complex, Saccharomyces cerevisiae Proteins, Ubiquitin-Protein Ligases, Endopeptidases, Polyubiquitin, Models, Biological, Substrate Specificity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    29
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
29
Average
Top 10%
Top 10%