Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genes & Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genes & Development
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination

Authors: Hiroyuki, Sasanuma; Kouji, Hirota; Tomoyuki, Fukuda; Naoko, Kakusho; Kazuto, Kugou; Yasuo, Kawasaki; Takehiko, Shibata; +2 Authors

Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination

Abstract

Meiosis ensures genetic diversification of gametes and sexual reproduction. For successful meiosis, multiple events such as DNA replication, recombination, and chromosome segregation must occur coordinately in a strict regulated order. We investigated the meiotic roles of Cdc7 kinase in the initiation of meiotic recombination, namely, DNA double-strand breaks (DSBs) mediated by Spo11 and other coactivating proteins. Genetic analysis using bob1-1 cdc7Δ reveals that Cdc7 is essential for meiotic DSBs and meiosis I progression. We also demonstrate that the N-terminal region of Mer2, a Spo11 ancillary protein required for DSB formation and phosphorylated by cyclin-dependent kinase (CDK), contains two types of Cdc7-dependent phosphorylation sites near the CDK site (Ser30): One (Ser29) is essential for meiotic DSB formation, and the others exhibit a cumulative effect to facilitate DSB formation. Importantly, mutations on these sites confer severe defects in DSB formation even when the CDK phosphorylation is present at Ser30. Diploids of cdc7Δ display defects in the chromatin binding of not only Spo11 but also Rec114 and Mei4, other meiotic coactivators that may assist Spo11 binding to DSB hot spots. We thus propose that Cdc7, in concert with CDK, regulates Spo11 loading to DSB sites via Mer2 phosphorylation.

Keywords

DNA Replication, Recombination, Genetic, Meiosis, DNA Topoisomerases, Type II, Endodeoxyribonucleases, Saccharomyces cerevisiae Proteins, Molecular Sequence Data, Cell Cycle Proteins, DNA Breaks, Double-Stranded, Amino Acid Sequence, Saccharomyces cerevisiae, Phosphorylation, Protein Serine-Threonine Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    129
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
129
Top 10%
Top 10%
Top 1%
Published in a Diamond OA journal