<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Focal expression of glial cell line-derived neurotrophic factor in developing mouse limb bud
pmid: 8854889
Focal expression of glial cell line-derived neurotrophic factor in developing mouse limb bud
Glial cell line-derived neurotrophic factor (GDNF) is known to support the survival of motoneurons in vitro and in vivo, as well as subpopulations of sensory neurons in vitro. To clarify the mechanisms by which GDNF supports these neurons, we examined the patterns of GDNF mRNA expression in relation to motor and sensory axons during early stages of mouse development. Between embryonic days (E) 10 and 12, a time when motor and sensory axons are entering the periphery, GDNF mRNA is expressed at high levels in a restricted region in proximal limb buds where axons converge and enter the limb. At later ages (E14-16), GDNF mRNA was detected in non-neuronal cells along peripheral nerve, in dermis, and in some muscles. To characterize cells that express GDNF in the proximal limb, GDNF expression in the forelimb was compared to expression patterns of two markers of muscle, Pax 3 and myogenin, as well as with the pan neurotrophin receptor (p75) which is expressed by Schwann cell precursors. We show that expression of GDNF in the proximal limb bud at E11-12 does not correlate with markers of muscle or Schwann cell precursors, which supports the idea that GDNF is expressed by mesenchymal cells in this region. Our results suggest that GDNF expression in proximal limb buds may function as a transient survival factor, particularly for motor neurons, before they reach their final targets. GDNF expression in muscle and dermis at later stages suggests that GDNF may have additional functions as motor and sensory neurons mature.
- Washington State University United States
- University of Mary United States
Motor Neurons, Limb Buds, Gene Expression Regulation, Developmental, Mice, Inbred Strains, Nerve Tissue Proteins, Axons, Mice, Neuroprotective Agents, Neurotrophin 3, Pregnancy, Animals, Female, Glial Cell Line-Derived Neurotrophic Factor, Nerve Growth Factors, Neurons, Afferent, Cell Division, In Situ Hybridization
Motor Neurons, Limb Buds, Gene Expression Regulation, Developmental, Mice, Inbred Strains, Nerve Tissue Proteins, Axons, Mice, Neuroprotective Agents, Neurotrophin 3, Pregnancy, Animals, Female, Glial Cell Line-Derived Neurotrophic Factor, Nerve Growth Factors, Neurons, Afferent, Cell Division, In Situ Hybridization
12 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).48 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
