Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytical Chemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical Chemistry
Article . 2019 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions

Glycoqueuing: Isomer-Specific Quantification for Sialylation-Focused Glycomics

Authors: Wanjun Jin; Chengjian Wang; Meifang Yang; Ming Wei; Linjuan Huang; Zhongfu Wang;

Glycoqueuing: Isomer-Specific Quantification for Sialylation-Focused Glycomics

Abstract

Changes of α-2,3-/α-2,6-linked sialic acids (SAs) in sialylglycans have been found to be closely related with some diseases. However, accurate quantification of sialylglycans at the isomeric level remains challenging due to their instability, structural complexity, and low mass spectrometry (MS) detection sensitivity. Herein, we propose an analytical strategy named "glycoqueuing", which allows sequential chromatographic elution and high-sensitivity MS quantification of various sialylglycan isomers based on isotopic labeling followed by analysis via online reversed-phase high performance liquid chromatography coupling with MS (RP-HPLC-MS). The new method was validated by detailed structural identification and quantification of fetal bovine serum (FBS) N-linked sialylglycan isomers, during which many branching isomers were successfully differentiated, and 28 sialylglycan compositions with Neu5Gc residues were analyzed. The method was successfully applied to isomer-specific, quantitative comparison of sialylated N-glycans between bovine and rabbit immunoglobulin G (IgG) and the search for serum sialylated N-glycan biomarker candidates of hepatocellular carcinoma, during which a 55% increase of α-2,6-sialylated fucosylated N-glycans was revealed, demonstrating the great applicability and potential clinical usage of the method.

Related Organizations
Keywords

Chromatography, Reverse-Phase, Carcinoma, Hepatocellular, Glycosylation, Staining and Labeling, Liver Neoplasms, Carbohydrate Sequence, Isomerism, Polysaccharides, Tandem Mass Spectrometry, Immunoglobulin G, Sialic Acids, Animals, Humans, Cattle, Rabbits, Fucose

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%