Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 2004
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Biology
Article . 2004 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney

Authors: Catherine Schwesinger; Dylan L. Steer; Kevin T. Bush; Tobias N. Meyer; Robert O. Stuart; Jeffrey D. Esko; Mita M. Shah; +3 Authors

Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney

Abstract

Glycosaminoglycans in the form of heparan sulfate proteoglycans (HSPG) and chondroitin sulfate proteoglycans (CSPG) are required for normal kidney organogenesis. The specific roles of HSPGs and CSPGs on ureteric bud (UB) branching morphogenesis are unclear, and past reports have obtained differing results. Here we employ in vitro systems, including isolated UB culture, to clarify the roles of HSPGs and CSPGs on this process. Microarray analysis revealed that many proteoglycan core proteins change during kidney development (syndecan-1,2,4, glypican-1,2,3, versican, decorin, biglycan). Moreover, syndecan-1, syndecan-4, glypican-3, and versican are differentially expressed during isolated UB culture, while decorin is dynamically regulated in cultured isolated metanephric mesenchyme (MM). Biochemical analysis indicated that while both heparan sulfate (HS) and chondroitin sulfate (CS) are present, CS accounts for approximately 75% of the glycosaminoglycans (GAG) in the embryonic kidney. Selective perturbation of HS in whole kidney rudiments and in the isolated UB resulted in a significant reduction in the number of UB branch tips, while CS perturbation has much less impressive effects on branching morphogenesis. Disruption of endogenous HS sulfation with chlorate resulted in diminished FGF2 binding and proliferation, which markedly altered kidney area but did not have a statistically significant effect on patterning of the ureteric tree. Furthermore, perturbation of GAGs did not have a detectable effect on FGFR2 expression or epithelial marker localization, suggesting the expression of these molecules is largely independent of HS function. Taken together, the data suggests that nonselective perturbation of HSPG function results in a general proliferation defect; selective perturbation of specific core proteins and/or GAG microstructure may result in branching pattern defects. Despite CS being the major GAG synthesized in the whole developing kidney, it appears to play a lesser role in UB branching; however, CS is likely to be integral to other developmental processes during nephrogenesis, possibly involving the MM. A model is presented of how, together with growth factors, heterogeneity of proteoglycan core proteins and glycosaminoglycan sulfation act as a switching mechanism to regulate different stages of the branching process. In this model, specific growth factor-HSPG combinations play key roles in the transitioning between stages and their maintenance.

Keywords

Kidney development, Heparan sulfate proteoglycan, Microarray, Kidney, Organ culture, Rats, Sprague-Dawley, Organ Culture Techniques, Glypicans, Branching morphogenesis, Morphogenesis, Animals, Lectins, C-Type, Receptor, Fibroblast Growth Factor, Type 2, Molecular Biology, Glycosaminoglycans, Ureteric bud, Membrane Glycoproteins, Chondroitin Sulfates, Gene Expression Regulation, Developmental, Membrane Proteins, Receptor Protein-Tyrosine Kinases, Cell Biology, Rats, Chondroitin Sulfate Proteoglycans, Isolated ureteric bud culture, Female, Proteoglycans, Cell Division, Heparan Sulfate Proteoglycans, Chondroitin sulfate proteoglycan, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    66
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
66
Top 10%
Top 10%
Top 10%
hybrid