Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genomicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1990 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genomics
Article . 1991
versions View all 2 versions

Assignment of the erythropoietin receptor (EPOR) gene to mouse chromosome 9 and human chromosome 19

Authors: M, Budarf; K, Huebner; B, Emanuel; C M, Croce; N G, Copeland; N A, Jenkins; A D, D'Andrea;

Assignment of the erythropoietin receptor (EPOR) gene to mouse chromosome 9 and human chromosome 19

Abstract

Erythropoietin (EPO), the primary regulator of mammalian erythropoiesis, binds and activates a specific receptor on erythroid progenitors. The human and mouse cDNAs for this receptor (EPOR) have recently been isolated. These cDNAs were used to establish the genomic location of the EPOR gene. By somatic cell hybrid analysis, the locus for the EPOR maps to human chromosome (Chr) 19pter-q12. By interspecific backcross mapping the locus is tightly linked to the murine Ldlr locus near the centromere of mouse Chr9. This region of mouse Chr9 is homologous to a region of human Chr 19p13 carrying the human LDLR and MEL loci, strongly suggesting that the human EPOR gene is at 19p13 near the human LDLR locus.

Keywords

Genetic Markers, Genetic Linkage, Chromosome Mapping, Receptors, Cell Surface, Hybrid Cells, Mice, Inbred C57BL, Muridae, Mice, Genes, Species Specificity, Receptors, Erythropoietin, Animals, Humans, Chromosomes, Human, Pair 19, Crosses, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    36
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
36
Average
Top 10%
Top 10%
gold