The disintegrin domain of ADAM9: a ligand for multiple β1 renal integrins
The disintegrin domain of ADAM9: a ligand for multiple β1 renal integrins
Renal tubular epithelial cells in all nephron segments express a distinct member of the metalloprotease-disintegrin family, ADAM9 (adisintegrin and metalloprotease 9), in a punctate basolateral distribution co-localized to the β1 integrin chain [Mahimkar, Baricos, Visaya, Pollock and Lovett (2000) J. Am. Soc. Nephrol. 11, 595–603]. Discrete segments of the nephron express several defined β1 integrins, suggesting that ADAM9 interacts with multiple renal integrins and thereby regulates epithelial cell–matrix interactions. Intact ADAM9 and a series of deletion constructs sequentially lacking the metalloprotease domain and the disintegrin domain were assembled as chimaeras with a C-terminal GFP (green fluorescent protein) tag. Stable expression of the ADAM9/GFP protein on the surface of HEK-293 cells (human embryonic kidney 293 cells) significantly decreased adhesion to types I and IV collagen, vitronectin and laminin, but had little effect on adhesion to fibronectin. Expression of the disintegrin/cysteine-rich/GFP construct yielded a similar, but more marked pattern of decreased adhesion. Expression of the cysteine-rich/GFP construct had no effect on adhesion, indicating that the disintegrin domain was responsible for the competitive inhibition of cell–matrix binding. To define the specific renal tubular β1 integrins interacting with the ADAM9 disintegrin domain, a recombinant GST (glutathione S-transferase)-disintegrin protein was used as a substrate in adhesion assays in the presence or absence of specific integrin-blocking antibodies. Inclusion of antibodies to α1, α3, α6, αv and β1 blocked adhesion of HEK-293 cells to GST-disintegrin protein. Immobilized GST-disintegrin domain perfused with renal cortical lysates specifically recovered the α3, α6, αv and β1 integrin chains by Western analysis. It is concluded that ADAM9 is a polyvalent ligand, through its disintegrin domain, for multiple renal integrins of the β1 class.
- University of California, San Francisco United States
Integrin beta Chains, Disintegrins, Integrin beta1, Recombinant Fusion Proteins, Membrane Proteins, Metalloendopeptidases, Kidney, Ligands, Cell Line, Cell-Matrix Junctions, Protein Structure, Tertiary, Rats, Rats, Sprague-Dawley, ADAM Proteins, Cell Line, Tumor, Animals, Humans, Peptides, Melanoma, Glutathione Transferase
Integrin beta Chains, Disintegrins, Integrin beta1, Recombinant Fusion Proteins, Membrane Proteins, Metalloendopeptidases, Kidney, Ligands, Cell Line, Cell-Matrix Junctions, Protein Structure, Tertiary, Rats, Rats, Sprague-Dawley, ADAM Proteins, Cell Line, Tumor, Animals, Humans, Peptides, Melanoma, Glutathione Transferase
6 Research products, page 1 of 1
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
