A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS
A comparative study of X-ray tomographic microscopy on shales at different synchrotron facilities: ALS, APS and SLS
Synchrotron radiation X-ray tomographic microscopy (SRXTM) was used to characterize the three-dimensional microstructure, geometry and distribution of different phases in two shale samples obtained from the North Sea (sample N1) and the Upper Barnett Formation in Texas (sample B1). Shale is a challenging material because of its multiphase composition, small grain size, low but significant amount of porosity, as well as strong shape- and lattice-preferred orientation. The goals of this round-robin project were to (i) characterize microstructures and porosity on the micrometer scale, (ii) compare results measured at three synchrotron facilities, and (iii) identify optimal experimental conditions of high-resolution SRXTM for fine-grained materials. SRXTM data of these shales were acquired under similar conditions at the Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory, USA, the Advanced Photon Source (APS) of Argonne National Laboratory, USA, and the Swiss Light Source (SLS) of the Paul Scherrer Institut, Switzerland. The data reconstruction of all datasets was handled under the same procedures in order to compare the data quality and determine phase proportions and microstructures. With a 10× objective lens the spatial resolution is approximately 2 µm. The sharpness of phase boundaries in the reconstructed data collected from the APS and SLS was comparable and slightly more refined than in the data obtained from the ALS. Important internal features, such as pyrite (high-absorbing), and low-density features, including pores, fractures and organic matter or kerogen (low-absorbing), were adequately segmented on the same basis. The average volume fractions of low-density features for sample N1 and B1 were estimated at 6.3 (6)% and 4.5 (4)%, while those of pyrite were calculated to be 5.6 (6)% and 2.0 (3)%, respectively. The discrepancy of data quality and volume fractions were mainly due to different types of optical instruments and varying technical set-ups at the ALS, APS and SLS.
- University of California, San Francisco United States
- University of Zurich Switzerland
- Paul Scherrer Institute Switzerland
- Lawrence Berkeley National Laboratory United States
- University of California, Berkeley United States
porosity, 550, 3105 Instrumentation, microstructure, Biophysics, 610 Medicine & health, Optical Physics, Condensed Matter Physics, Shale, Research Papers, shale, 170 Ethics, 3108 Radiation, Rare Diseases, X-ray tomographic microscopy, 10237 Institute of Biomedical Engineering, 3106 Nuclear and High Energy Physics, X-ray tomographic microscopy; Shale; Porosity; Microstructure, Porosity, Microstructure, Physical Chemistry (incl. Structural)
porosity, 550, 3105 Instrumentation, microstructure, Biophysics, 610 Medicine & health, Optical Physics, Condensed Matter Physics, Shale, Research Papers, shale, 170 Ethics, 3108 Radiation, Rare Diseases, X-ray tomographic microscopy, 10237 Institute of Biomedical Engineering, 3106 Nuclear and High Energy Physics, X-ray tomographic microscopy; Shale; Porosity; Microstructure, Porosity, Microstructure, Physical Chemistry (incl. Structural)
15 Research products, page 1 of 2
- 2019IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2013IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2016IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).44 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
