Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Endocrinology
Article . 2010 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Protein kinase D activation stimulates the transcription of the insulin receptor gene

Authors: Yue-Ming Wang; Dan-Qing Song; Yi Li; Xuefu You; Hao Zhang; Wei-Jia Kong; Yong-Qiang Shan; +1 Authors

Protein kinase D activation stimulates the transcription of the insulin receptor gene

Abstract

Our previous studies proved that berberine (BBR) up-regulates the insulin receptor (InsR) gene by stimulating its promoter and calphostin C blocks this effect. Here, the present study was designed to discover the specific kinase isoform(s) used by berberine. In the blocking experiment, we found that Gö6976, a kinase inhibitor that potently inhibit PKCμ/protein kinase D 1 (PKD1), effectively and specifically reduced the activity of BBR on InsR. PKD1/PKCμ is a member of the PKD family that also covers PKD2 and PKD3/PKCν with high homology. The role of PKD1 in InsR expression was also proved by using another PKD-activator oligomycin. In the RNA interference experiment, we found that the effects of BBR on InsR expression and on cellular glucose consumption were partially eliminated by silencing any one of the three PKDs and were totally abolished by silencing all of them. BBR enhanced the PKD1 catalytic activity, but not its expression. Along with BBR treatment, PKD1 ser916 autophosphorylation was increased time- and dose-dependently, indicating an activation of PKD1 by BBR. BBR also induces PKD1 translocation from cytosol-to-plasma membrane, further verifying the activation of PKD1. These results suggest that the PKD family is involved in the transcriptional regulation of the InsR gene; we consider it to be a potential new target to discover drugs for sugar-related disorders in the future.

Related Organizations
Keywords

Berberine, Transcription, Genetic, Carbazoles, Hep G2 Cells, Receptor, Insulin, Up-Regulation, Enzyme Activation, Isoenzymes, Inhibitory Concentration 50, Gene Knockdown Techniques, Humans, Oligomycins, Gene Silencing, Protein Kinase Inhibitors, Protein Kinase C

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%