Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular Genetics a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Genetics and Genomics
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Molecular analysis of the Drosophila miniature-dusky (m-dy) gene complex: m-dy mRNAs encode transmembrane proteins with similarity to C. elegans cuticulin

Authors: S M, DiBartolomeis; B, Akten; G, Genova; M A, Roberts; F R, Jackson;

Molecular analysis of the Drosophila miniature-dusky (m-dy) gene complex: m-dy mRNAs encode transmembrane proteins with similarity to C. elegans cuticulin

Abstract

Mutations in the Drosophila miniature-dusky ( m-dy) gene complex were first reported by Morgan and Bridges about 90 years ago. m-dy mutants have abnormally small wings, a phenotype attributed to a cell-autonomous reduction in the size of the epidermal cells comprising the differentiated wing. Using a molecular genetic approach, we have characterized the m-dy chromosomal interval and identified a pair of adjacent transcription units corresponding to m and dy. A dy mutant known as dy (And) has a single base substitution within the protein-coding region that is predicted to result in an amber stop codon and premature translational termination. We show that dy mRNA is expressed at two discrete periods during the life cycle--one during embryonic development and early larval instars, the second during adult development, coincident with wing differentiation. In agreement with the phenotypic similarity of m and dy mutants, sequence comparisons reveal a similarity between the predicted MINIATURE and DUSKY proteins, and indicate that the m and dy genes are members of a larger Drosophila gene family. Both m and dy, as well as other members of this superfamily, are predicted to encode transmembrane proteins with similarity to C. elegans cuticle proteins known as cuticulins. We postulate that m, dy and other members of this protein superfamily function as structural components of the Drosophila cuticulin layer. Such a role for m and dy products in wing differentiation is sufficient to explain the morphological phenotypes associated with m-dy mutants.

Related Organizations
Keywords

X Chromosome, Base Sequence, Sequence Analysis, RNA, Molecular Sequence Data, Chromosome Mapping, Membrane Proteins, Helminth Proteins, Blotting, Northern, Blotting, Southern, Drosophila melanogaster, Codon, Nonsense, Animals, Drosophila Proteins, Point Mutation, Amino Acid Sequence, RNA, Messenger, Caenorhabditis elegans, Caenorhabditis elegans Proteins, Sequence Alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Average
Top 10%
Top 10%