Powered by OpenAIRE graph

Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or α-Synuclein

Authors: Stephen, Willingham; Tiago Fleming, Outeiro; Michael J, DeVit; Susan L, Lindquist; Paul J, Muchowski;

Yeast Genes That Enhance the Toxicity of a Mutant Huntingtin Fragment or α-Synuclein

Abstract

Genome-wide screens were performed in yeast to identify genes that enhance the toxicity of a mutant huntingtin fragment or of α-synuclein. Of 4850 haploid mutants containing deletions of nonessential genes, 52 were identified that were sensitive to a mutant huntingtin fragment, 86 that were sensitive to α-synuclein, and only one mutant that was sensitive to both. Genes that enhanced toxicity of the mutant huntingtin fragment clustered in the functionally related cellular processes of response to stress, protein folding, and ubiquitin-dependent protein catabolism, whereas genes that modified α-synuclein toxicity clustered in the processes of lipid metabolism and vesicle-mediated transport. Genes with human orthologs were overrepresented in our screens, suggesting that we may have discovered conserved and nonoverlapping sets of cell-autonomous genes and pathways that are relevant to Huntington's disease and Parkinson's disease.

Keywords

Huntingtin Protein, Protein Folding, Ubiquitin, Nitrosation, Genes, Fungal, Synucleins, Nuclear Proteins, Proteins, Biological Transport, Nerve Tissue Proteins, Saccharomyces cerevisiae, Lipid Metabolism, Oxidative Stress, Transformation, Genetic, Osmotic Pressure, Mutation, alpha-Synuclein, Humans, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    382
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
382
Top 1%
Top 1%
Top 1%