Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Science
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Protein Science
Article . 2000 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Protein Science
Article . 2000
versions View all 2 versions

Tumor suppressor INK4: Refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data

Authors: C, Yuan; T L, Selby; J, Li; I J, Byeon; M D, Tsai;

Tumor suppressor INK4: Refinement of p16INK4A structure and determination of p15INK4B structure by comparative modeling and NMR data

Abstract

AbstractWithin the tumor suppressor protein INK4 (inhibitor of cyclin‐dependent kinase 4) family, p15INK4B is the smallest and the only one whose structure has not been determined previously, probably due to the protein's conformational flexibility and instability. In this work, multidimensional NMR studies were performed on this protein. The first tertiary structure was built by comparative modeling with p16INK4A as the template, followed by restrained energy minimization with NMR constraints (NOE and H‐bonds). For this purpose, the solution structure of p16INK4A, whose quality was also limited by similar problems, was refined with additional NMR experiments conducted on an 800 MHz spectrometer and by structure‐based iterative NOE assignments. The nonhelical regions showed major improvement with root‐mean‐square deviation (RMSD) improved from 1.23 to 0.68 Å for backbone heavy atoms. The completion of p15INK4B coupled with refinement of p16INK4A made it possible to compare the structures of the four INK4 members in depth, and to compare the structures of p16INK4A in the free form and in the p16INK4A‐CDK6 complex. This is an important step toward a comprehensive understanding of the precise functional roles of each INK4 member.

Related Organizations
Keywords

Models, Molecular, Protein Folding, Base Sequence, Tumor Suppressor Proteins, Molecular Sequence Data, Cell Cycle Proteins, Protein Structure, Secondary, Protein Structure, Tertiary, Genes, Tumor Suppressor, Carrier Proteins, Nuclear Magnetic Resonance, Biomolecular, Cyclin-Dependent Kinase Inhibitor p16, Cyclin-Dependent Kinase Inhibitor p15, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Average
bronze